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Self-diffusion coefficients and shear viscosity of model nanocolloidal dispersions
by molecular dynamics simulation
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David M. Heyes
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The self-diffusion coefficientsD of both species in model nanocolloidal dispersions have been computed
using molecular dynamics~MD! simulation, in which three-dimensional model spherical colloidal particles
were in a molecularly discrete solvent. The effects of the relative density, size, and concentration of the two
species were explored. Simulations were carried out at infinite dilution~a single colloidal particle! and at finite
packing fractions~many colloidal particles! in the simulation cell using single interaction centers between the
model colloidal particles and solvent molecules. The calculations used the Weeks-Chandler-Andersen~WCA!
or Lennard-Jones~LJ!, interaction potentials between all species. Nanocolloid particles with diameters up to
;6 times the solvent molecule were modeled. At liquidlike densities the self-diffusion coefficients of the
colloidal particles,Dc , for all sizes and packing fractions, statistically exhibited no mass dependence but a
significant colloid particle size dependence. This can be interpreted in a systematic manner using a Mori series
expansion. The first Mori coefficient~which is inversely proportional to particle mass! dominates the value of
the self-diffusion coefficient for both species, and which also leads to a formal cancellation of the mass
dependence at the order of the first Mori coefficientKB1 ~the self-diffusion coefficient is therefore determined
by a ‘‘static’’ property to this order!. The values ofDc at each packing fraction are found to be approximately
inversely proportional to the colloidal particle diameter, quantitatively following the same trend as the Stokes-
Einstein equation, even for the small colloidal particle sizes and finite colloidal particle concentrations studied
here. Another consequence of the dominance of the first Mori coefficient is that the normalized velocity
autocorrelation function of the colloidal particle at a short time can be represented well at all state points and
packing fractions by the analytic form.cos(V0t), whereV05AKB1, which is the so-called Einstein fre-
quency. LJ and WCA systems with otherwise the same system parameters manifest the same oscillation
frequency, but the LJ oscillation amplitudes are larger and the values ofDc are smaller. The self-diffusion
coefficients and shear viscosities obey a volume fraction dependence similar to that found for much larger
colloidal particles.@S1063-651X~98!15211-X#

PACS number~s!: 66.10.2x, 82.20.Tr, 82.20.Wt
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I. INTRODUCTION

Colloidal liquids consist of solid particles typicall
0.1– 1.0mm in diameter, suspended in a ‘‘host’’ liquid@1#.
The ratio of the mass of the colloidal particle,mc , and sol-
vent molecule,ms , is for all practical purposes in th
mc /ms→` limit for colloidal particles in this range. The
size ratio of the two species rather than the mass ratio is
important parameter determining the dynamical behavio
importance to transport coefficients, as inertial effects are
significant for the low Reynolds number flows typical
found in many colloidal liquid flow situations. The comple
ity of these systems prohibits exact analytic treatments
their dynamical properties in all but the most idealized
cases~e.g., infinitely dilute systems!, and alternative analyti-
cal treatments or numerical simulation techniques wh
treat the faster degrees of freedom in an approximate way
required at finite concentration. There are now a numbe
‘‘mesoscale’’ discrete particle simulation techniques th
have been developed with varying degrees of rigor, such

*Deceased.
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Brownian dynamics@2,3#, which is the most simple model in
having no many-body hydrodynamics, i.e., correlated coll
particle trajectories caused by the flow field they establish
the intervening solvent. Stokesian dynamics, which incor
rates partially the many-body hydrodynamics, can be c
~mainly! in the diffusion tensor@4–6# or resistance tenso
formulations@7#. These techniques are inadequate in deal
with the dynamical behavior ofnanocolloidal particles,
where the inertia of both colloid and solvent molecules
important, and where both species relax over similar ti
scales. The nanocolloids provide interesting transitio
states between simple molecular liquids and the more u
macrocolloids in which the colloid particle diameters ar
typically in excess of;0.1mm. Previously, molecular dy-
namics~MD! simulations of single so-called Brownian pa
ticles ~which are nanocolloids at infinite dilution! were car-
ried out to investigate the mass and size dependence o
self-diffusion coefficient. These data have been interpre
within the framework of the Mori series expansion, e.
Refs. @8–12#. One of the important conclusions from the
studies is the relative insensitivity of the self-diffusion coe
ficient of the colloidal particle to its mass, but the extrem
sensitivity to its size. In this study, we continue to explo
the consequences of this, in particular for the analytic fo
5845 © 1998 The American Physical Society
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of the velocity autocorrelation function. The effects of fini
colloid particle concentrations on the behavior of the se
diffusion coefficient are also considered here.

II. THEORETICAL BACKGROUND

Transport coefficients calculated using the Green-Ku
~GK! integral formulas require appropriate correlation fun
tions which can be calculated by a MD computer simulat
@13#. The self-diffusion coefficientDi for particle i can be
obtained using the velocity autocorrelation functionCVi(t)
in the GK integrand,

CVi~ t !5^vi~ t !•vi~0!&, ~1!

wherevi is the velocity of particlei and ^•••& denotes an
average over time origins. The time-dependent self-diffus
coefficient of particlei is given by

Di~ t !5~1/3!E
0

tS 12
x

t DCVi~x!dx, ~2!

and the transport coefficient isDi5 limt→`Di(t). The self-
diffusion coefficient of particlei can also be obtained di
rectly by MD from the linear region of the mean-square d
placement as@13–16#

Di5 lim
t→`

^ur i~ t !2r i~0!u2&
6t

, ~3!

wherer i(t) is the absolute position of particlei at a timet
after an arbitrarily defined time origin, and^•••& again de-
notes an average over time origins. Approximate express
for the transport coefficients can be written using the gen
alized Langevin equation,~GLE! formulation for the time
correlation function in terms of a hierarchy of memory fun
tions. According to the GLE formalism, the diffusion coef
cient for an arbitrary species in the system can be obta
from the corresponding velocity autocorrelation functi
@17,18#

D5
kT

m
E

0

`^v~ t !•v~0!&

^v2&
dt5

kT

mM̃~0!
, ~4!

wherem is the mass of the particle of interest,k is Boltz-
mann’s constant, andM̃ (0) is the Laplace transform of th
memory function at zero frequency, values of which can
expressed in terms of the Mori expansion and so-called M
coefficients

M̃ ~s!5
K1

s1K2

s1K3

s1•••

, ~5!

where the memory kernelsKn5Mn(0) are the Mori coeffi-
cients. For example, up to the fourth frequency momen
the second Mori coefficient,Ki 52 , we have the generic form
-

o
-
n

n

-

ns
r-

d

e
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M̃ ~0!5E
0

`

M ~ t !dt5E
0

`

K1f ~K2 ,t !dt. ~6!

where f (K2 ,t) is a function ofK2 and higher order Mori
coefficients. The first, and to a lesser extent the second, M
coefficient can be computed accurately using MD simu
tion. If there areNsp molecules of a particular species in th
simulation cell, the Mori coefficients can be obtained fro
the time average of thenth time derivative of the normalized
velocity vi as @19#

Un5
m

NspkT K (
i 51

Nsp

vi
n
•vi

nL . ~7!

For example the first two Mori coefficients are given b

K15U15
1

3NspkTmK (
i 51

Nsp

Fi
2L , ~8!

whereFi is the force on particlei , and

K25
U2

K1
2K1 . ~9!

In practice, the statistical uncertainty inKi deteriorates
rapidly with increasingi, and onlyK1 , and to a somewha
lesser extentK2 , can be computed with acceptable statist
whenNsp;1, as is the case for one of the species here. As
exact expression for the memory function is not known
simulation liquids, an assumption is often made about
analytic form. For example, according to Toxvaerd@20,21#,
as the isotope mass is increased, a Gaussian term in
memory function becomes the main contribution. The e
pression for the memory function in this approximation is

M ~ t !5K1e2K2t2/2, ~10!

which is therefore uniquely defined in terms of the first tw
Mori coefficients. Then,

M̃ ~0!5E
0

`

M ~ t !dt5
K1

2
A p

K2
, ~11!

which takes the form ofK1 times a relaxation time,t, com-
posed of ;(K2)21/2 times a numerical constantO(1).
Therefore in the Gaussian memory function approximat
to second order in the Mori coefficients the diffusion coef
cient is using Eq.~11! substituted in Eq.~4!:

DG5
kT

mK1
A2K2

p
. ~12!

In the absence of an exact solution for the memory fu
tion in Eq. ~4!, many approximate closures of this continu
fraction have been proposed and evaluated by compa
with molecular dynamics ‘‘exact’’ self-diffusion coefficient
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~e.g., Refs.@12,14,15#!. The important conclusion in the
present context is that a truncation at the first Mori coe
cient typically gives a reasonably good value for the se
diffusion coefficient, which is often not improved by goin
to higher Mori coefficients. As we will discuss, in practice,
is found that the relaxation timet is only weakly dependen
on mass.

As may be seen from Eq.~8!, K1 is the ratio of a configu-
rational i.e., mass independent! or ‘‘static’’ average and the
mass of the particle of interest, so that for solvent and coll
we expect

mcKc1f 5msKs1 , ~13!

wheremc andms are the masses of the colloidal and solve
particles, respectively.Kc1 and Ks1 are the corresponding
first Mori coefficients.f is unity when the solvent and colloi
particle are the same size i.e.,sc5ss . It was shown in a
previous simulation study thatf is reasonably well approxi
mated by a simple function ofsc /ss in two and three di-
mensions, which reflects the increased number of neigh
and resulting greater value forK1 for the larger solute par
ticles @9#. Let Dc andDs be the self-diffusion coefficients o
the colloidal particle and the solvent particle, respective
The insensitivity ofDc to the mass of the colloidal particle i
a direct consequence of the dominance of the first Mori
efficient

Dc5~kT/mc!/M̃ ~0!'~kT/mc!/~tKc1!

5kT/tg~sc ,ss ,rc ,rs!, ~14!

where rc and rs are the number densities of colloid an
solvent particles, respectively, andg is a static average. Th
relaxation timet is largely mass independent. The mass
pendence comes in at the level ofK2 . Tankeshwar showed
that this puts an approximate bound of 1,Dc(ms)/Dc(mc)
,A2 at infinite dilution in the colloidal particle for all stat
points@14#, which is in accord with our previous simulatio
results on single colloidal particle systems@11#.

The first Mori coefficient is also equal to the square of t
so-called Einstein frequency,V0 , which is the frequency a
which any molecule would vibrate if it were undergoin
small oscillations in the average potential well produced
its surrounding molecules@16#. The short-time expansion o
CV(t) for colloid or solvent particle is, in terms ofV0 ,

CV~ t !5
kT

m S 12V0
2 t2

2!
1••• D . ~15!

Here we consider the dependence of the self-diffusion
efficients and shear viscosity on the mass, size, and con
tration of the model nanocolloidal particles. The time dep
dence of the velocity autocorrelation function on mass a
size of the colloidal particle is also considered.

III. COMPUTATIONAL DETAILS

The MD computer simulations had one or more colloid
particles in a cubic simulation box. The basic interaction l
-
-

d

t

rs

.

-

-

y

-
n-
-
d

l

between all the particles was the purely repulsive Wee
Chandler-Andersen~WCA!, potential@22#, which is a poten-
tial formed out of the repulsive part of the Lennard-Jon
~LJ! potential shifted upwards by the minimum energye,
and truncated at the potential minimumr m521/6s, wheres
is the diameter of the particle. One of the advantages of
WCA potential is that it is short ranged and therefore t
solvent can be computed relatively efficiently. The poten
between colloid and solvent particle was modified to refl
the volume of the colloid particle@8#,

u~r !5H 4eF S ss

r 2a D 12

2S ss

r 2a D 6G1e for r<r m

0 for r .r m .

~16!

This model for the colloid has been used by us before
previous publications~e.g., Ref.@11#!. The advantage of this
analytic form is that it shifts the potential out a furthera in
distance while retaining the same curvature as between
solvent molecules~i.e., whena50) which minimizes any
numerical algorithmic errors in updating the particle po
tions. The cutoff separationr m for this potential isr m5a
121/6ss . Colloid-colloid interactions were chosen to be th
same as those between colloid and solvent molecules.

An alternative procedure would be to assign a diamete
the colloidal particle,sc , and to use the potential

u~r !5H 4eF S scs

r D 12

2S scs

r D 6G1e for r<r m

0 for r .r m ,

~17!

and a typical combining rule for the diameters of the tw
species, such asscs5(sc1ss)/2 and r m521/6scs. How-
ever, this would make the solvent-colloid interaction mu
steeper than between the solvent molecules for a collo
particle diameter larger than that of the solvent molecu
which is unrealistic as any colloidal particle consists of
oms similar to those of the solvent in its periphery. Nev
theless, a comparison between these two potential forms
lows us to relatea to an equivalent core diameter for th
colloidal particle. That is,scs'ss1a, which givessc'ss
12a. Therefore the ratio of the volume of the colloid
particle relative to that of the solvent is approximately@(ss
12a)/ss#

3. Calculations were also performed with th
same model but using the full Lennard-Jones model poten
truncated at the appropriate value of 2.5s for solvent-
solvent, colloid-colloid, and colloid-solvent particles.

The Verlet algorithm was used@23#, with the system kept
at approximately constant temperature using velocity res
ing @24# or Nosé-Hoover @25–27# thermostats. The simula
tions were carried out at solvent reduced densitiesrs

5Nss
3/V in the range 0.7– 0.9 and at a reduced tempera
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TABLE I. Details of the simulations containing one colloidal particle in the simulation cell i.e., in n
infinite dilution limit or f→0. The simulations were carried out forNc51 andNs5N2Nc solvent mol-
ecules using the WCA potential for all interactions. Key:a is the colloid size potential parameter from E
~16!, mc /ms is the ratio of the mass of a colloid particle divided by that of a solvent molecule,Dc is the
diffusion coefficient of the colloid particle,Ds is the diffusion coefficient of the solvent particle,h is the
shear viscosity from the Green-Kubo formula taking all interactions into account@16#, Vc0 is the Einstein
frequency of the colloidal particle from the first Mori coefficient for the colloid from Eq.~8!, andVs0 is the
Einstein frequency of the solvent from the first Mori coefficient for the solvent from Eq.~8!. The cycle times
are tcs52p/Vs0 and tcc52p/Vc0 . The units are those of the solvent molecule:sc , e, and ms . In all
simulations the solvent density wasrs50.7 andkT/e51.0. Typical statistical uncertainties in the collo
self-diffusion coefficients are65 and62% for the solvent molecules.

rs N mc /ms a Vc0 Vs0 tcc tcs Dc Ds h

0.7 1000 3.375 0.5 13.1 14.4 0.480 0.436 0.0517 0.127 0.8

0.7 1000 1.000 0.5 24.0 14.4 0.262 0.436 0.0612 0.128 0.8

0.7 2916 1.000 0.5 25.5 14.4 0.246 0.438 0.064 0.125 -

0.7 1000 0.296 0.5 44.2 14.4 0.142 0.436 0.0559 0.127 0.8

0.7 8000 1.000 1.0 33.7 14.4 0.187 0.438 0.0362 0.134 0.8

0.7 8000 0.296 1.0 62.0 14.4 0.101 0.438 0.0389 0.130 0.8

0.7 8000 1.000 1.5 43.7 14.4 0.144 0.437 0.0260 0.132 0.8

0.7 8000 1.000 2.0 53.4 14.5 0.118 0.435 0.0217 0.123 0.8

0.7 8000 1.000 2.5 64.1 14.5 0.098 0.432 0.0176 0.124 0.8

0.9 8000 1.000 0.5 34.2 20.0 0.184 0.315 0.0189 0.0474 3.0

0.9 8000 1.000 1.0 49.0 20.0 0.128 0.314 0.0108 0.0473 3.0

0.9 8000 1.000 1.5 63.8 20.1 0.098 0.313 0.0077 0.0471 3.0

0.9 8000 3.375 2.0 43.0 20.2 0.146 0.311 0.0061 0.0450 3.1

0.9 8000 0.296 2.5 107.1 20.4 0.059 0.309 0.0041 0.0434 3.3

0.9 8000 1.000 2.5 95.0 20.4 0.066 0.309 0.0045 0.0437 3.2

0.9 8000 3.375 2.5 51.7 20.4 0.122 0.309 0.0041 0.0436 3.1
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of kT/e51.0. The time step wash50.005ss(ms /e)1/2, and
the simulations extended typically for.106 time steps.

Simulations were carried out at infinite dilution~i.e., with
a single colloidal particle in the simulation cell! and at finite
packing fractions,f ~i.e., with many colloidal particles in the
simulation cell!, to investigate the effects of colloidal partic
concentration on the diffusion coefficient, i.e.,D(f,sc) for a
colloid packing fractionf and colloidal particle sizesc . We
haveN5Nc1Ns , whereN, Nc , andNs are the total numbe
of particles, the number of colloidal, and the number of s
vent particles, respectively. We chose systems up toN
510 976 to investigate the system size dependence of
self-diffusion coefficient of both species.

The establishment of a system at a given volume frac
is not trivial whenss /sc;1 because of uncertain exclude
volume effects between colloid and particle. The pack
fraction of the model colloidal particles was defined to be

f5
Nc

V

p

6
~sc1ss!

3, ~18!

with (sc1ss) assumed to be theeffectivediameter of the
colloidal particle, andV the total volume of the system. Th
number of solvent molecules was determined by ‘‘filling
the ~assumed! usable space between the colloidal partic
with Ns solvent molecules,
-

he

n

g

s

Ns5rsVs5rs~V2Vc!5rsV~12f!, ~19!

where Vs is the volume available to the solvent. Equatio
~19! is only exact in thef→0 limit here, asss andsc are
the same order of magnitude, and therefore we are assum
that there are no overlapping regions of solvent exclus
around the colloidal particles. If we letss51 then Eqs.~18!
and ~19! can be written in terms ofa as

f5
rsNcp~21a!3

6Ns1rsNcp~21a!3
~20!

and

Ns5rs

Ncp

6f
~21a!3~12f! ~21!

to specifyf and a values and obtain the total size of th
system to be simulated with the number of solvent molecu
for a given number of colloidal particles being given by E
~21!.

IV. RESULTS AND DISCUSSION

Several volume fraction values and colloidal diame
particle values were used in the simulations. Table I giv
the data for WCA simulations carried out with a single co
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TABLE II. Details of the simulations carried out at finite colloid concentration with a finite coll
packing fraction,f, using the WCA potential form for all pair interactions. Key:a is the colloid size
potential parameter from Eq.~16!, Nc is the number of colloidal particles,Ns is the number of solvent
molecules computed from Eq.~19!, Kc1 is the first Mori coefficient of the colloidal particle from Eq.~8!, Kc2

is the second Mori coefficient of the colloidal particle from Eq.~9!, andS is the cubic box side-length. Othe
parameters are as for Table I. The units are those of the solvent:ss , e, andms . The asterisk indicates tha
an ambiguous limiting plateau value was obtained at long times in the time dependent self-diffusion
cient. In each case,rs50.7 andkT/e51.0. The value ofDs for the pure solvent was 0.13160.002.

f a Nc Ns mc /ms Dc h 1022KB1 1023KB2 S

0.1 0.5 10 490 1.000 0.0285 1.22 6.18 2.99 8.9
0.1 0.5 10 490 3.375 0.027* 1.3 1.83 1.36 8.94
0.1 0.5 55 2861 1.000 0.029 1.6 5.82 - 16.1
0.1 0.5 55 2861 3.375 0.0255 1.4 1.76 1.30 16.1
0.1 0.5 100 5224 1.000 0.030 1.3 5.83 - 19.7
0.1 0.5 100 5224 3.375 0.027* 1.3 1.78 1.33 19.7
0.1 1.0 10 854 1.000 0.010 1.6 13.57 - 10.7
0.1 1.0 10 854 8.000 0.012 2.6 4.79 2.35 10.7
0.1 1.0 55 5269 1.000 0.015 1.9 14.39 9.13 19.7
0.1 1.0 55 5269 8.000 0.013* 1.75 1.75 2.42 19.7
0.1 1.0 125 10 851 1.000 0.013 1.7 15.01 - 25.0
0.1 1.5 10 1362 1.000 0.0071 2.4 29.45 24.8 12.5
0.1 1.5 10 1362 3.000 0.0075 3.9 12.49 11.9 12.5
0.1 1.5 10 1362 8.000 0.0072* 3.7* 3.60 5.35 12.5
0.1 1.5 10 1362 15.625 0.008* 3.3 2.32 4.98 12.5
0.1 1.5 50 6862 1.000 0.0076 2.64 31.07 25.4 21.5
0.1 1.5 50 6862 15.625 0.0077* 2.7 1.92 4.25 21.5
0.1 2.0 10 2031 1.000 0.0030 7.2 81.34 76.8 14.3
0.1 2.0 10 2031 5.000 0.003* 8.3 15.45 20.0 14.3
0.1 2.0 10 2031 27.000 0.0044* 7.1* 2.63 8.01 14.3
0.1 2.0 55 10 921 1.000 0.0038 5.4 72.24 72.9 25.0
0.1 2.0 55 10 921 27.000 0.004* 5.9 2.59 7.94 25.0
0.2 0.5 21 479 1.000 0.018 1.65* 6.61 - 8.94
0.2 0.5 122 2794 1.000 0.021 1.65 6.76 3.08 16.0
0.2 0.5 223 5101 1.000 0.0205 1.76* 6.80 - 19.7
0.3 0.5 204 2712 1.000 0.012 3.25 7.14 3.19 16.1
0.3 0.5 35 465 1.000 0.012 2.63* 7.20 3.21 8.94
0.4 0.5 52 448 1.000 0.0040 4.6 9.21 3.27 8.94
0.4 0.5 305 2611 1.000 0.0030 3.0 7.99 3.02 16.1
c
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loidal particle. Data corresponding to the finite packing fra
tion simulations are covered in Table II. Table III compar
the results from simulations carried out with either the WC
or LJ potentials for the three types of interaction (ucc, ucs,
anduss) but otherwise identical system parameters for so
of the a/ss andmc /ms combinations.
-
s

e

We consider first the simulations with a single collo
particle. Table I reveals that the diffusion coefficient of t
colloidal particle shows no mass dependence within the
tistical uncertainty associated with averaging for only o
particle. This behavior is consistent with the discussion
Sec. II. However, the value ofDc is sensitive to the solven
n
times.
TABLE III. Comparisons between the WCA and LJ simulations atf;0.1. The asterisk denotes that a
ambiguous limiting plateau value was obtained in the time dependent self-diffusion coefficient at long

a Nc Ns mc /ms DWCA DLJ

1022KB1

~WCA!
1022KB1

~LJ!
1023KB2

~WCA!
1023KB2

~LJ!

1.5 10 1362 1.000 0.0071 0.0060 29.45 28.1 24.8 20.7
1.5 10 1362 15.625 0.008* 0.0046 2.32 1.80 4.98 4.15
2.0 10 2038 1.000 0.003 0.002 81.3 73.9 76.8 65.8
2.0 55 10921 1.000 0.0038 0.0022 72.2 72.8 72.9 65.5
2.0 55 10921 27.000 0.0040 0.0025 2.59 2.55 7.94 7.39
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density and to the size of the solute particle. The value ofDc
decreases with increasingsc andrs . Even thoughDc does
not depend on mass to any noticeable extent, the assoc
velocity autocorrelation functions~VACF’s! are strongly
mass dependent, oscillating with a higher frequency
more rapidly damped with decreasing value ofmc . Figure 1
shows the VACF for three values ofmc /ms for a52.5 and
rs50.9. As the mass decreases or equivalently the densi
the colloidal particle decreases, the VACF becomes m
oscillatory, which indicates a stronger ‘‘backscattering’’
the colloidal particle as it ‘‘rattles’’ in its solvent cage. A
the density of the colloidal particle decreases, it oscilla
within its cage with increasing frequency, becoming mo
decoupled from the surrounding solvent dynamics~at least at
short time!. Figure 2 shows the corresponding time depe
dent diffusion coefficientsDc(t), which are seen not to b
mass dependent within the statistical uncertainty of the si
lations. For a constant mass of the colloidal particle its d
sity decreases drastically througha50.5– 2.5 when com-
pared with that of the solvent particle@as the density of the

FIG. 1. Colloidal particle velocity autocorrelation functions f
WCA simulations carried out with a single colloidal particle wi
a52.5 and at a solvent densityrs50.9, and three colloid masse
mc /ms given in the figure.N58000. Dimensionless units are use
in all of the figures.

FIG. 2. The derived time-dependent self-diffusion coefficie
of the colloidal particles using Eq.~2! and the VACF of Fig. 1.
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colloidal particle is;mc„ss /(ss12a)…23]. Although the
colloidal particle becomes large compared to the solvent p
ticle the colloid particle dynamics become dominated by
surrounding solvent molecules at long times. The VACF a
become more oscillatory as the size of the colloidal parti
increases, keeping the mass the same~see Fig. 3! for a in the
range 0.0– 2.5 and withmc /ms51. Figure 4 shows that the
self-diffusion coefficients decrease with increasing colloid
particle size.

An estimate of the time scale at which the solvent b
comes influential on the velocity relaxation of the colloid
particle can be made by comparing the colloid normaliz
VACF with the function cos(Vc0t), whereVc0 is the Einstein
frequency of the colloidal particle, computed in each ca
from the first Mori coefficientKc1 . Figure 5 compares the
normalized VACF for a massmc /ms50.296 atrs50.7 and
a50.5 with cos(Vc0t). The short-time behavior of the VACF
is given accurately by this function for alla and mc /ms
considered. This agreement extends further out in time
the less massive colloidal particles. The VACF looks ty

s

FIG. 3. Colloidal particle velocity autocorrelation functions fo
WCA simulations carried out with a single colloidal particle takin
a50.0– 2.5, and at a solvent densityrs50.7. The three colloidal
particle masses shown are given in the figure.N58000.

FIG. 4. The derived time-dependent self-diffusion coefficie
using Eq.~2! and the VACF shown in Fig. 3.
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cally like that of a damped harmonic oscillator which grad
ally loses its initial phase after many oscillations, and dec
in a nonexponential fashion. As the density of the colloid
particle approaches that of the solvent particle, the poin
departure between the two functions moves to shorter tim
This reflects a better degree of coupling between the dyn
ics of colloid and solvent molecule. The same trend is app
ent on reducing the colloidal particle size toward that of
solvent, while the mass of the colloidal particle is kept co
stant. Classical solutions of the Langevin equation also p
dict an effect of colloid particle density on its velocity aut
correlation function@28–30#. However, they do not captur
the negative regions in the VACF characteristic of collision
‘‘rebound’’ effects, which are so prominent in the system
studied here. This is not surprising as the Langevin equa
does not take account of the microstructure of the solv
and nanocolloid system, which is essential if collisional
fects are to be reproduced. Much larger,mm-sized, colloidal
particles are probably required for these formulas to be
curate representations of the colloidal dynamics.

We turn now to the simulations carried out with mo

FIG. 5. Comparison betweenCVc(t), with cos(Vc0t) for the state
pointsrs50.7, a50.5, N58000, andmc /ms50.296.

FIG. 6. Colloidal particle velocity autocorrelation functions f
WCA simulations carried out with ten colloidal particles takinga
51.5 and at a solvent densityrs50.7. The four colloidal particle
masses considered are shown are in the figure.N51372. The mass
ratiosmc /ms are given on the figure.
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than one colloidal particle in the simulation cell. Figure
shows that there is an increasing oscillation frequency w
decreasing colloid mass for thef50.1 andrs50.7 systems
for mc /ms in the range 1.0– 15.6 anda51.5. Figure 7
shows the effect of colloid particle size on the VACF f

FIG. 7. As for Fig. 6, except that thea dependence is consid
ered at a fixed colloidal particle mass ofmc /ms51.0.

FIG. 8. Colloidal particle velocity autocorrelation functions fo
~a! WCA and ~b! LJ simulations carried out with 55 colloidal par
ticles and 10 921 solvent molecules takinga52.0 and at solvent
densitiesrs50.7 andmc /ms51.0.
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mc /ms51. Again as for the infinite dilution systems, th
oscillation frequency increases with particle size. Therefo
the same trends in the VACF are apparent in simulati
carried out at finite colloid packing fractions, with the Ei
stein frequency again accounting for the short-time deca
the VACF ~in this case it includes the effects of mass, si
and concentration of colloidal particles! @see Fig. 8, where
there is again short time coincidence between the collo
normalized VACF and cos(Vc0t)].

Additional simulations were carried out using the LJ p
tential with an interaction truncation distance ofr co52.5r m
in order to discover the effect of the type and range of
potential. Parameters and results from these simulations
compared with those of the equivalent WCA potential
Table III. Figures 8 and 9 show the VACF and integrat
VACF’s, respectively, for comparable WCA and LJ syste
at finite packing fraction. The LJ function oscillates at t
same frequency as that of the WCA system. This is to
expected as the first and second Mori coefficients of the
systems are the same within the simulation statistics~see

FIG. 9. The time dependent self-diffusion coefficient of tw
simulations carried out with WCA and LJ potentials.a52.0,
mc /ms51.0, Nc555, andNs510 921.

FIG. 10. Dependence of the colloid self-diffusion coefficient
the colloidal particle diameter (ss12a)21 for two volume frac-
tions and solvent densities. The lines correspond to the predi
slopes based on the Stokes-Einstein relationship@Eq. ~22!# for the
f→0 systems.
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Table III!. Nevertheless, the amplitude of the LJ system
larger and the limiting self-diffusion coefficient is lowe
Therefore although the harmonic frequencies of the velo
relaxation are statistically the same, the relaxation of the c
loidal particles within the cage at later times is differen
Presumably, the surrounding cage is more ‘‘rigid’’ in th
case of LJ fluid, which acts as a better restraint on the cen
particle, making its correlation function retain its oscillato
form for longer time and causing the diffusion coefficient
be lower than in the WCA case. Coincidence of the sho
time behavior of the VACF of the WCA and LJ pure fluid
was also noted by Dean and Kushick@31#.

The diffusion coefficient of the colloidal particle is sens
tive to the size of the colloidal particle and solvent bu
density. For self-diffusion the classical solution for macr
scopic spheres at infinite dilution is

Dc5
kT

3psch0
~22!

if we assume stick boundary conditions, andh0 is the shear
viscosity of the bulk solvent, which can be obtained usi
the Green-Kubo formula for example. Figure 10 gives a p
of D againstsc

21, wheresc5ss12a at two volume frac-
tions and solvent densities. At infinite dilution, the data f
on a straight line for the larger particle size range with
Dc50 intercept at infinite dilution. The slopes of thers
50.7 and 0.9 systems are in reasonable agreement with
predictions based on Eq.~22!, which are also given in Fig
10. The reduced values of the self-diffusion coefficients
finite volume fraction make it more difficult to obtain a rel
able extrapolation. TheDc for the a50.5 WCA system
states~Table IV! decrease almost linearly with increasingf
over the whole packing fraction range. The volume fracti
dependence of the colloid self-diffusion to first order is giv
by the Einstein-Batchelor formula@1#

Dc~f!

Dc0
5122.5f1•••, ~23!

whereDc andDc0 are the self-diffusion coefficients of col
loidal particles at long time and infinite dilution~i.e., Nc
51), respectively. An accurate fit to experimental data c
ering the higher volume fraction region is given by Eq.~24!,
@32#,

TABLE IV. Mean values for the self-diffusion coefficient fo
the WCA systems described in Table II usinga50.5 and rs

50.7. The Einstein and experimentally derived expressions
from Eqs. ~23! and ~24!, which are denoted by (D/D0)1 and
(D/D0)2 , respectively, in the table heading. We useD050.058 to
scale the simulation data~MD!. The heading (D/D0)MD denotes the
ratio obtained from the simulations.

f D (D/D0)MD (D/D0)1 (D/D0)2

0.1 0.029 0.50 0.75 0.57
0.2 0.021 0.36 0.50 0.37
0.3 0.012 0.21 0.25 0.21
0.4 0.004 0.07 0.00 0.09
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Dc~f!

Dc0
50.8~1.0021.15f!~1.022.0f!. ~24!

Table IV shows that the prediction forDc /Dc0 from Eq.
~23! overestimates the value forDc /Dc0 at finite packing
fraction ~especially atf50.1). The agreement with th
simulation data is much better using Eq.~24!.

The shear viscosity of the model colloidal liquids w
also computed using the shear stress correlation function
the appropriate Green-Kubo formula@13#. Let h be the vis-
cosity of the colloidal mixture. The values computed are p
sented in Tables I and II. BothD and h were subject to
greater statistical uncertainty with increasing packing fr
tion and colloidal particle size, and sometimes it was diffic
to establish a level plateau in the respective integrated t
correlation functions. Nevertheless, the expected trend o
creasing shear viscosity with volume fraction was obser
~see Table III!. The value of the viscosity decreased wi
increasing system size, presumably because the collectio
molecules was less constrained by the periodic bound
conditions for larger systems, and therefore the ‘‘activatio
energies for transitions between the various configuratio
states were typically lower. The mass dependence was
studied at the higher packing fractions forf.0.1. As the
number of colloidal particles increased, the coarse-grai
nature of the solvent was probably contributing to the grea
statistical fluctuation in the data. Phase space became m
structured and the system was probably more rea
‘‘trapped’’ in only part of the available phase space for tim
comparable to the length of the simulation. A low order e
pansion for the ratioh/h0 according to classical hydrody
namics is@1#

h~f!

h0
5112.5f1~661!f21•••. ~25!

The Krieger-Docherty expression is an empirical formu
which covers the higher end of the colloidal liquid range, a
which is in reasonable agreement with existing experime
data in the range covered here@1#,

h~f!

h0
5

1

~12f/fm!2
'11

2

fm
f1•••, ~26!

where the random close packing fraction is atfm50.63. It is
clear from the values in Table V that agreement with sim

TABLE V. Mean value for the shear viscosityh for the WCA
systems of Table II usinga50.5 andrs50.7. The h/h0 were
calculated usingh050.84 from Table I. The predictions from Eqs
~25! and~26! are denoted by (h/h0)1 and (h/h0)KD , respectively.
The standard errors are typically;10%. The heading (h/h0)MD

denotes the ratio obtained from the simulations.

f h (h/h0)MD (h/h0)1 (h/h0)KD

0.1 1.35 1.6 1.31 1.41
0.2 1.69 2.0 1.74 2.15
0.3 2.94 3.5 2.29 3.64
0.4 3.80 4.5 2.96 7.50
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lation data is best with Eq.~26!, although the viscosity is
systematically lower than found experimentally@represented
well by Eq. ~26!#, particularly with increasing volume frac
tion. Nevertheless, the agreement between the simulated
experimental self-diffusion coefficients and the shear visc
ity is quite remarkable, as these model colloidal particles
rather small. It suggests that the volume fraction depende
of the Newtonian shear viscosity observed for macrocol
dal particle systems may extend largely unchanged dow
simple liquid distance scales.

V. CONCLUSIONS

We have investigated the self-diffusion coefficients a
shear viscosity of model nanocolloidal dispersions. The m
and size dependence of the VACF’s were calculated.
colloidal particles with a lower density than the solvent m
ecules, the colloidal VACF had a pronounced damped os
latory form with a frequency given well by the Einstein fre
quency Vc0 . The oscillatory frequency increased wit
decreasing mass and increasing solvent density. Both
these parameters~and also the value of the colloid conce
tration! determined the value of the first Mori coefficient o
the colloidal particle (Kc1) and also the oscillation frequenc
(V05AKc1) to a very good approximation.

Despite the oscillations observed in the VACF for sm
mass colloidal particles, the influence of colloid particle de
sity on the value of the self-diffusion coefficient was foun
to be remarkably small. The self-diffusion coefficients we
sensitive to colloid particle size however, but not to mass
a given size. Additional simulations were carried out usi
the LJ form for all interactions in the system. The first Mo
coefficients of the WCA and LJ systems were statistically
same for equal colloidal particle size and solvent dens
and, consistent with this, the oscillation frequency in the
locity autocorrelation function was the same in both cas
The amplitude of the oscillations was larger for the LJ s
tems and self-diffusion coefficients were smaller, reflect
the greater cohesion of the LJ fluid, which acted to restr
better the colloidal particle~even though the force field ex
perienced by the colloidal particle was much the same!. The
Stokes-Einstein formula for the self-diffusion coefficient
infinite dilution applies well even for these small colloid
particles, especially for the higher liquid number densitie

The concentration dependence of the self-diffusion co
ficients and the shear viscosity agreed quite well with cl
sical limiting and semiempirical expressions derived fro
experimental data for much larger colloidal particles, su
gesting a wider range of colloidal particle sizes where th
formulas can be applied. A possible additional interest in
mass dependence of these colloidal particles may be fo
for the larger and lower density colloidal particles, whic
increasingly resemble a vapor cavity in the liquid. Vap
cavities are of some current research interest as they occ
cavitating liquids and other areas of practical interest~e.g., in
foams!.
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