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The self-diffusion coefficient® of both species in model nanocolloidal dispersions have been computed
using molecular dynamicéMD) simulation, in which three-dimensional model spherical colloidal particles
were in a molecularly discrete solvent. The effects of the relative density, size, and concentration of the two
species were explored. Simulations were carried out at infinite dil@dingle colloidal particleand at finite
packing fractiongmany colloidal particlesin the simulation cell using single interaction centers between the
model colloidal particles and solvent molecules. The calculations used the Weeks-Chandler-AQdsen
or Lennard-Jone§lJ), interaction potentials between all species. Nanocolloid particles with diameters up to
~6 times the solvent molecule were modeled. At liquidlike densities the self-diffusion coefficients of the
colloidal particlesD, for all sizes and packing fractions, statistically exhibited no mass dependence but a
significant colloid particle size dependence. This can be interpreted in a systematic manner using a Mori series
expansion. The first Mori coefficierftvhich is inversely proportional to particle mastominates the value of
the self-diffusion coefficient for both species, and which also leads to a formal cancellation of the mass
dependence at the order of the first Mori coefficikpyg (the self-diffusion coefficient is therefore determined
by a “static” property to this order The values oD, at each packing fraction are found to be approximately
inversely proportional to the colloidal particle diameter, quantitatively following the same trend as the Stokes-
Einstein equation, even for the small colloidal particle sizes and finite colloidal particle concentrations studied
here. Another consequence of the dominance of the first Mori coefficient is that the normalized velocity
autocorrelation function of the colloidal particle at a short time can be represented well at all state points and
packing fractions by the analytic form:cos)gt), where Q,=+Kg;, which is the so-called Einstein fre-
guency. LJ and WCA systems with otherwise the same system parameters manifest the same oscillation
frequency, but the LJ oscillation amplitudes are larger and the valu€s. @ire smaller. The self-diffusion
coefficients and shear viscosities obey a volume fraction dependence similar to that found for much larger
colloidal particles[S1063-651X%98)15211-X]

PACS numbeg(s): 66.10—x, 82.20.Tr, 82.20.Wt

I. INTRODUCTION Brownian dynamic$2,3], which is the most simple model in
having no many-body hydrodynamics, i.e., correlated colloid
Colloidal liquids consist of solid particles typically particle trajectories caused by the flow field they establish in
0.1-1.0um in diameter, suspended in a “host” liquid]. the intervening solvent. Stokesian dynamics, which incorpo-
The ratio of the mass of the colloidal particle,, and sol- ~ rates partially the many-body hydrodynamics, can be cast
vent molecule,ms, is for all practical purposes in the (mainly) in the diffusion tensof4—6] or resistance tensor
m./mg—oo limit for colloidal particles in this range. The fo_rmulatlons[7]. 'I_'hese techmques are mad_equate in dealing
size ratio of the two species rather than the mass ratio is th&ith the dynamical behavior ohanocolloidal particles,
important parameter determining the dynamical behavior of/Nere the inertia of both colloid and solvent molecules are
importance to transport coefficients, as inertial effects are ndfnportant, and where both species relax over similar time

significant for the low Reynolds number flows typically scales. The nanocollmds prowdg interesting transitional
. . o I states between simple molecular liquids and the more usual
found in many colloidal liquid flow situations. The complex-

itv of these svstems prohibits exact analviic treatments OFacrocolloidsin which the colloid particle diameters are
Y ! Sy proniu y : . ypically in excess of~0.1um. Previously, molecular dy-
their dynamical properties in all but the most idealized of

L - . . ~'namics(MD) simulations of single so-called Brownian par-
casege.g., infinitely dilute systemsand alternative analyti-  jcjes (which are nanocolloids at infinite dilutiprvere car-

cal treatments or numerical S|mullat|on technllques whichied out to investigate the mass and size dependence of the
treat the faster degrees of freedom in an approximate way ag|s-diffusion coefficient. These data have been interpreted
required at finite concentration. There are now a number ofyithin the framework of the Mori series expansion, e.g.,
“mesoscale” discrete particle simulation techniques thatRefs_[g_]_Zl_ One of the important conclusions from these
have been developed with varying degrees of rigor, such astudies is the relative insensitivity of the self-diffusion coef-
ficient of the colloidal particle to its mass, but the extreme
sensitivity to its size. In this study, we continue to explore
*Deceased. the consequences of this, in particular for the analytic form
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of the velocity autocorrelation function. The effects of finite ~ ® o
colloid particle concentrations on the behavior of the self- M(0)= JO M(t)dt= JO Kif(Kz,t)dt. (6)
diffusion coefficient are also considered here.

Il. THEORETICAL BACKGROUND Wher_e_f(Kz,t) is a function ofK, and higher order Mori _
coefficients. The first, and to a lesser extent the second, Mori
Transport coefficients calculated using the Green-Kubaoefficient can be computed accurately using MD simula-
(GK) integral formulas require appropriate correlation func-tion. If there areN¢, molecules of a particular species in the
tions which can be calculated by a MD computer simulationsimulation cell, the Mori coefficients can be obtained from
[13]. The self-diffusion coefficienD; for particlei can be the time average of theth time derivative of the normalized
obtained using the velocity autocorrelation functiGg;(t) velocity v; as[19]
in the GK integrand,

N
m P
Cui(t)=(vi(t)-vi(0)), (1) Un=Nska<§l vi ~v{‘>- @)
wherev; is the velocity of particlei and(---) denotes an For example the first two Mori coefficients are given by
average over time origins. The time-dependent self-diffusion
coefficient of particld is given by 1 Nsp .
K1 Ul_m = ), €S)
t X
Di(t):(1/3)f (1— ;) Cvi(x)dx, 2
0 whereF; is the force on particlé, and
and the transport coefficient 3;=Ilim,_,..D;(t). The self- U,
diffusion coefficient of particle can also be obtained di- K2=K——K1. (9)
rectly by MD from the linear region of the mean-square dis- 1
placement a$13-1§ In practice, the statistical uncertainty K; deteriorates
rapidly with increasing, and onlyK;, and to a somewhat
o (Iri(H)=ri(0)]?) lesser extenK,, can be computed with acceptable statistics
Di=lim 6t ' 3 whenNg,~1, as is the case for one of the species here. As an

t—oo

exact expression for the memory function is not known for
simulation liquids, an assumption is often made about its
wherer;(t) is the absolute position of particieat a timet  analytic form. For example, according to Toxva¢a®,21],

after an arbitrarily defined time origin, ad- -) again de- as the isotope mass is increased, a Gaussian term in the
notes an average over time origins. Approximate expressiongiemory function becomes the main contribution. The ex-
for the transport coefficients can be written using the generpression for the memory function in this approximation is
alized Langevin equationGLE) formulation for the time
correlation function in terms of a hierarchy of memory func-
tions. According to the GLE formalism, the diffusion coeffi-
cient for an arbitrary species in the system can be obtained
from the corresponding velocity autocorrelation functionwhich is therefore uniquely defined in terms of the first two
[17,18 Mori coefficients. Then,

_KT=uv)-v(0)) KT (0= [ Metydi= 2/ T 11
D—mfo e dt—mM(O), (4) (0) fo (t) 2 VK, (13)

M(t) =K e K22 (10)

wherem is the mass of the particle of interetis Boltz-  Which tal;es the form oK, times a relgxatlion times, com-
mann’s constant, aniifl(0) is the Laplace transform of the posed o 7(K2) times a numerica _constarlD(_l). .
Therefore in the Gaussian memory function approximation

memory function at zero frequency, values of which can b : : . e -
expressed in terms of the Mori expansion and so-called Moﬁq second order in the Mori coefficients the diffusion coeffi

coefficients cient is using Eq(11) substituted in Eq(4):

Kl S+ K3 D k_T &

T stKy st ©) °TmKk; Vo (12

1

(s)

In the absence of an exact solution for the memory func-
where the memory kernels,=M,(0) are the Mori coeffi- tion in Eg.(4), many approximate closures of this continued
cients. For example, up to the fourth frequency moment ofraction have been proposed and evaluated by comparing
the second Mori coefficienK;_,, we have the generic form with molecular dynamics “exact” self-diffusion coefficients
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(e.g., Refs.[12,14,19). The important conclusion in the between all the particles was the purely repulsive Weeks-

present context is that a truncation at the first Mori coeffi-Chandler-AnderseWCA), potential[22], which is a poten-

cient typically gives a reasonably good value for the self-tial formed out of the repulsive part of the Lennard-Jones

diffusion coefficient, which is often not improved by going (LJ) potential shifted upwards by the minimum energy

to higher Mori coefficients. As we will discuss, in practice, it and truncated at the potential minimutp=2"%¢, whereo

is found that the relaxation timeis only weakly dependent s the diameter of the particle. One of the advantages of the

on mass. _ _ _ WCA potential is that it is short ranged and therefore the
As may be seen from E¢8), K is the ratio of a configu-  goyent can be computed relatively efficiently. The potential

rational i.e., mass independgmr “static” average and the panyeen colloid and solvent particle was modified to reflect
mass of the particle of interest, so that for solvent and coII0|qhe volume of the colloid particlEg]

we expect

mcKclf: mSKsl, (13)

+e for r<r,

wherem, andm, are the masses of the colloidal and solventu(r)= (16)
particles, respectivelyK.; and K4, are the corresponding 0 for r>r,.

first Mori coefficientsf is unity when the solvent and colloid

particle are the same size i.er,.=0. It was shown in a

previous simulation study thdtis reasonably well approxi- _ _ _
mated by a simple function of./o in two and three di- This model for the colloid has been used by us before in

mensions, which reflects the increased number of neighbofevious publicationge.g., Ref[11]). The advantage of this
and resu'ting greater value f&l for the |arger solute par- analytiC fOI‘m iS that |t ShlftS the pOtential out a furthfrin
ticles[9]. Let D, andDj be the self-diffusion coefficients of distance while retaining the same curvature as between two
the colloidal particle and the solvent particle, respectivelysolvent moleculegi.e., whena=0) which minimizes any
The insensitivity oD, to the mass of the colloidal particle is numerical algorithmic errors in updating the particle posi-
a direct consequence of the dominance of the first Mori cotions. The cutoff separation,, for this potential isr,= «
efficient + 24, Colloid-colloid interactions were chosen to be the
same as those between colloid and solvent molecules.
D= (kT/mC)/I\~/I(O)%(kT/mc)/(rKcl) An alternative procedure would be to assign a diameter to

the colloidal particleg., and to use the potential
; ; : ( ch) © ( Ocs
solvent particles, respectively, agds a static average. The de|| —| —|—
relaxation timer is largely mass independent. The mass deu(r)= r r
pendence comes in at the level W§. Tankeshwar showed 0 for r>r,,,
that this puts an approximate bound oD (mg)/D (M)
< /2 at infinite dilution in the colloidal particle for all state
points[14], which is in accord with our previous simulation
results on single colloidal particle systeifridl]. and a typical combining rule for the diameters of the two
The first Mori coefficient is also equal to the square of thespecies, such as = (o.+05)/2 andr,= 2Y64 . How-
so-called Einstein frequenc§),, which is the frequency at ever, this would make the solvent-colloid interaction much
which any molecule would vibrate if it were undergoing steeper than between the solvent molecules for a colloidal
small oscillations in the average potential well produced byparticle diameter larger than that of the solvent molecule,
its surrounding moleculedl 6]. The short-time expansion of which is unrealistic as any colloidal particle consists of at-
Cy(t) for colloid or solvent particle is, in terms &, oms similar to those of the solvent in its periphery. Never-
theless, a comparison between these two potential forms al-
lows us to relatew to an equivalent core diameter for the
(15  colloidal particle. That isg .~ o5+ a, Which giveso.~o
+2a. Therefore the ratio of the volume of the colloidal

Here we consider the dependence of the self-diffusion coP@rticle relative to that of the solvent is approximatply
-2a)log]®. Calculations were also performed with the

efficients and shear viscosity on the mass, size, and conce- : .
tration of the model nanocolloidal particles. The time depenSame model but using the full Lennard-Jones model potential

dence of the velocity autocorrelation function on mass andruncated at the appropriate value of @.3or solvent-
size of the colloidal particle is also considered. solvent, colloid-colloid, and colloid-solvent particles.

The Verlet algorithm was usgd@3], with the system kept
at approximately constant temperature using velocity rescal-
ing [24] or NoseHoover[25-27 thermostats. The simula-
The MD computer simulations had one or more colloidaltions were carried out at solvent reduced densitigs
particles in a cubic simulation box. The basic interaction law= Naglv in the range 0.7—0.9 and at a reduced temperature

=KT/79(0¢,0s,pc,Ps) (14

where p. and ps are the number densities of colloid and 6

+e€ for r=r,

17

kT , t2
Cy(t)=——|1-085;+ -

IIl. COMPUTATIONAL DETAILS
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TABLE |. Details of the simulations containing one colloidal particle in the simulation cell i.e., in near
infinite dilution limit or ¢—0. The simulations were carried out fdl,=1 andNgs=N— N, solvent mol-
ecules using the WCA potential for all interactions. Keyis the colloid size potential parameter from Eq.
(16), m./mq is the ratio of the mass of a colloid particle divided by that of a solvent mole@yés the
diffusion coefficient of the colloid particld) is the diffusion coefficient of the solvent particle, is the
shear viscosity from the Green-Kubo formula taking all interactions into acddéht(}., is the Einstein
frequency of the colloidal particle from the first Mori coefficient for the colloid from &), andQg, is the
Einstein frequency of the solvent from the first Mori coefficient for the solvent from(@&qgThe cycle times
are 7.= 27l Qg and 7..=2m/Q . The units are those of the solvent molecute:, e, andmg. In all
simulations the solvent density wag=0.7 andkT/e=1.0. Typical statistical uncertainties in the colloid
self-diffusion coefficients are5 and+2% for the solvent molecules.

Ps N mg /mg a Qo Qg Tee Tcs D. Ds Y

0.7 1000 3.375 0.5 13.1 14.4 0.480 0.436 0.0517 0.127 0.848
0.7 1000 1.000 0.5 24.0 14.4 0.262 0.436 0.0612 0.128 0.810
0.7 2916  1.000 0.5 25.5 14.4 0.246 0.438 0.064 0.125 -

0.7 1000 0.296 0.5 44.2 14.4 0.142 0.436 0.0559 0.127 0.843
0.7 8000 1.000 1.0 33.7 14.4 0.187 0.438 0.0362 0.134 0.843
0.7 8000 0.296 1.0 62.0 14.4 0.101 0.438 0.0389 0.130 0.838
0.7 8000 1.000 15 43.7 14.4 0.144 0.437 0.0260 0.132 0.839

0.7 8000 1.000 2.0 53.4 145 0.118 0.435 0.0217 0.123 0.849
0.7 8000 1.000 2.5 64.1 145 0.098 0.432 0.0176 0.124 0.858
0.9 8000 1.000 0.5 34.2 20.0 0.184 0.315 0.0189 0.0474 3.07
0.9 8000 1.000 1.0 49.0 20.0 0.128 0.314 0.0108 0.0473 3.01
0.9 8000 1.000 15 63.8 20.1 0.098 0.313 0.0077 0.0471 3.05
0.9 8000 3.375 2.0 43.0 20.2 0.146 0.311 0.0061 0.0450 3.18
0.9 8000 0.296 2.5 107.1 20.4 0.059 0.309 0.0041 0.0434 3.31
0.9 8000 1.000 2.5 95.0 20.4 0.066 0.309 0.0045 0.0437 3.27
0.9 8000 3.375 2.5 51.7 20.4 0.122 0.309 0.0041 0.0436 3.19

of kT/e=1.0. The time step wals=0.005r¢(ms/€)'?, and No=pVs=ps(V—V)=pV(1— ), (19)
the simulations extended typically fer10° time steps.

Simulations were carried out at infinite dilutighe., with  where V4 is the volume available to the solvent. Equation
a single colloidal particle in the simulation getind at finite  (19) is only exact in thep—0 limit here, aso and o are
packing fractionse (i.e., with many colloidal particles in the the same order of magnitude, and therefore we are assuming
simulation cell, to investigate the effects of colloidal particle that there are no overlapping regions of solvent exclusion
concentration on the diffusion coefficient, i.B.(®,0.) fora  around the colloidal particles. If we let;=1 then Eqs(18)
colloid packing fractionp and colloidal particle size.. We  and(19) can be written in terms ok as
haveN=N_.+ Ny, whereN, N., andN; are the total number

of particles, the number of colloidal, and the number of sol- pN.m(2+ )3
vent particles, respectively. We chose systems upNto = 6N+ pN_(2+ )3 (20)
=10976 to investigate the system size dependence of the sT Pse
self-diffusion coefficient of both species. and
The establishment of a system at a given volume fraction
is not trivial whenog/o.~1 because of uncertain excluded N7
volume effects between colloid and particle. The packing Ns=Psg(2+ a)*(1-¢) (21)

fraction of the model colloidal particles was defined to be

to specify ¢ and « values and obtain the total size of the
C T . system to be simulated with the number of solvent molecules
o=+ g(octos), (18 for a given number of colloidal particles being given by Eq.
(21).

with _(crc+ crs)_ assumed to be theffectivediameter of the IV. RESULTS AND DISCUSSION

colloidal particle, and/ the total volume of the system. The

number of solvent molecules was determined by “filling”  Several volume fraction values and colloidal diameter
the (assumeg usable space between the colloidal particlesparticle values were used in the simulations. Table | gives
with Ng solvent molecules, the data for WCA simulations carried out with a single col-
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TABLE L.
packing fraction,¢, using the WCA potential form for all pair interactions. Key:is the colloid size
potential parameter from Eq16), N. is the number of colloidal particles\s is the number of solvent
molecules computed from E¢L9), K, is the first Mori coefficient of the colloidal particle from E@®), K,
is the second Mori coefficient of the colloidal particle from E®), andSis the cubic box side-length. Other
parameters are as for Table I. The units are those of the solwgnk, andmg. The asterisk indicates that
an ambiguous limiting plateau value was obtained at long times in the time dependent self-diffusion coeffi-
cient. In each caseas=0.7 andkT/e=1.0. The value oD for the pure solvent was 0.1310.002.
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Details of the simulations carried out at finite colloid concentration with a finite colloid

) a N, N me/ms D, 7 10" %K, 10 3K g, S

01 05 10 490 1.000 0.0285  1.22 6.18 2.99 8.94
01 05 10 490 3.375 0027 1.3 1.83 1.36 8.94
01 05 55 2861  1.000  0.029 1.6 5.82 - 16.1
01 05 55 2861 3.375 0.0255 1.4 1.76 1.30 16.1
01 05 100 5224  1.000  0.030 1.3 5.83 - 19.7
01 05 100 5224 3375  0.027 1.3 1.78 1.33 19.7
0.1 1.0 10 854  1.000  0.010 1.6 13.57 - 10.7
0.1 1.0 10 854 8.000  0.012 2.6 4.79 2.35 10.7
0.1 1.0 55 5269 1.000  0.015 1.9 14.39 9.13 19.7
0.1 1.0 55 5269 8.000 0.013 1.75 1.75 2.42 19.7
0.1 1.0 125 10851  1.000  0.013 1.7 15.01 - 25.0
0.1 1.5 10 1362  1.000  0.0071 2.4 29.45 24.8 12.5
0.1 1.5 10 1362  3.000 0.0075 3.9 12.49 11.9 12.5
0.1 1.5 10 1362  8.000  0.0072 3.7 3.60 5.35 12.5
0.1 1.5 10 1362 15.625  0.008 3.3 2.32 4.98 12.5
0.1 1.5 50 6862 1.000 0.0076  2.64 31.07 25.4 215
0.1 1.5 50 6862 15.625  0.00Y7 2.7 1.92 4.25 215
01 20 10 2031 1.000 0.0030 7.2 81.34 76.8 14.3
01 20 10 2031 5000 0.003 8.3 15.45 20.0 14.3
01 20 10 2031 27.000 0.0084 7.1* 2.63 8.01 14.3
01 20 55 10921 1.000 0.0038 5.4 72.24 72.9 25.0
01 20 55 10921 27.000 0.004 5.9 2.59 7.94 25.0
02 05 21 479  1.000  0.018 165  6.61 - 8.94
02 05 122 2794  1.000  0.021 1.65 6.76 3.08 16.09
02 05 223 5101 1.000 0.020 1.76° 6.80 - 19.7
03 05 204 2712  1.000  0.012 3.25 7.14 3.19 16.1
03 05 35 465 1.000  0.012 283  7.20 3.21 8.94
04 05 52 448  1.000 0.0040 4.6 9.21 3.27 8.94
04 05 305 2611 1.000  0.0030 3.0 7.99 3.02 16.1

loidal particle. Data corresponding to the finite packing frac-
tion simulations are covered in Table II. Table lll compares
the results from simulations carried out with either the WCA
or LJ potentials for the three types of interactiand, U,

We consider first the simulations with a single colloid
particle. Table | reveals that the diffusion coefficient of the
colloidal particle shows no mass dependence within the sta-
tistical uncertainty associated with averaging for only one

andugd but otherwise identical system parameters for somgparticle. This behavior is consistent with the discussion in

of the /o5 andm;/mg combinations.

TABLE lll. Comparisons between the WCA and

Sec. Il. However, the value dd is sensitive to the solvent

LJ simulationspat0.1. The asterisk denotes that an

ambiguous limiting plateau value was obtained in the time dependent self-diffusion coefficient at long times.

10 %Kg; 107%Kg; 10 %K, 10 3Kjp,
o N N m./ms  Dwea Dy, (WCA) (LY (WCA) (LY
1.5 10 1362 1.000 0.0071  0.0060 29.45 28.1 24.8 20.7
15 10 1362 15.625 0.008  0.0046 2.32 1.80 4.98 4.15
2.0 10 2038 1.000 0.003  0.002 81.3 73.9 76.8 65.8
2.0 55 10921 1.000 0.0038  0.0022 72.2 72.8 72.9 65.5
2.0 55 10921 27.000 0.0040 0.0025 2.59 2.55 7.94 7.39
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FIG. 1. Colloidal particle velocity autocorrelation functions for . i . _ )
WCA simulations carried out with a single colloidal particle with FIG. 3. Colloidal particle velocity autocorrelation functions for
a=2.5 and at a solvent densipg=0.9, and three colloid masses WCA simulations carried out with a single colloidal particle taking

m./m given in the figureN=8000. Dimensionless units are used @=0.0-2.5, and at a solvent densjiy=0.7. The three colloidal
in all of the figures. particle masses shown are given in the figiNes 8000.

density and to the size of the solute particle. The valub of colloidal particle is~mg(os/(ost+ 2a)) 3. Although the
decreases with increasing. and p. Even thoughD, does  colloidal particle becomes large compared to the solvent par-
not depend on mass to any noticeable extent, the associattidle the colloid particle dynamics become dominated by the
velocity autocorrelation function§VACF's) are strongly surrounding solvent molecules at long times. The VACF also
mass dependent, oscillating with a higher frequency bubecome more oscillatory as the size of the colloidal particle
more rapidly damped with decreasing valuengf. Figure 1  increases, keeping the mass the sésee Fig. 3for « in the
shows the VACF for three values af./m, for «=2.5 and range 0.0-2.5 and wittm,/mg=1. Figure 4 shows that the
ps=0.9. As the mass decreases or equivalently the density sfelf-diffusion coefficients decrease with increasing colloidal
the colloidal particle decreases, the VACF becomes morgarticle size.

oscillatory, which indicates a stronger “backscattering” of ~An estimate of the time scale at which the solvent be-
the colloidal particle as it “rattles” in its solvent cage. As comes influential on the velocity relaxation of the colloidal
the density of the colloidal particle decreases, it oscillategarticle can be made by comparing the colloid normalized
within its cage with increasing frequency, becoming moreVACF with the function coslQt), where() is the Einstein
decoupled from the surrounding solvent dynanfatsieast at  frequency of the colloidal particle, computed in each case
short timeg. Figure 2 shows the corresponding time depen{from the first Mori coefficient.,. Figure 5 compares the
dent diffusion coefficient®(t), which are seen not to be normalized VACF for a mass./m;=0.296 atp;=0.7 and
mass dependent within the statistical uncertainty of the simue:= 0.5 with cos()t). The short-time behavior of the VACF
lations. For a constant mass of the colloidal particle its denis given accurately by this function for alt and m./mg

sity decreases drastically through=0.5—-2.5 when com- considered. This agreement extends further out in time for
pared with that of the solvent particlas the density of the the less massive colloidal particles. The VACF looks typi-

0.012 — 0.14
- ) 0296 —
0.01 § mefms  1.000 ---meer -
: 3375 0.12
0.008 | ]
— i ol
 0.006 } 1 =
Q ; <
0.004 2 0.08
0.002 | . 0.06
° ] 0.04
-0.002 ! | ;
i 02
0.004 i | 0.0
-0.006 ] 0§
-0.008 . L L -0.02 . ) . L 1 ! L
0 0.5 1 1.5 2 2.5 3 3.5 4 0 ) 4 6 3 10 12 14 16

FIG. 2. The derived time-dependent self-diffusion coefficients FIG. 4. The derived time-dependent self-diffusion coefficients
of the colloidal particles using Eq2) and the VACF of Fig. 1. using Eq.(2) and the VACF shown in Fig. 3.
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FIG. 5. Comparison betwed\, (t), with cos)t) for the state FIG. 7. As for Fig. 6, except that the dependence is consid-
pointsps=0.7, «=0.5, N=8000, andm,/m¢;=0.296. ered at a fixed colloidal particle mass of./ms=1.0.

cally like that of a damped harmonic oscillator which gradu-than one colloidal particle in the simulation cell. Figure 6
ally loses its initial phase after many oscillations, and decayshows that there is an increasing oscillation frequency with
in a nonexponential fashion. As the density of the colloidaldecreasing colloid mass for the=0.1 andp,=0.7 systems
particle approaches that of the solvent particle, the point ofor m./mg in the range 1.0-15.6 and=1.5. Figure 7
departure between the two functions moves to shorter timeshows the effect of colloid particle size on the VACF for
This reflects a better degree of coupling between the dynam-

ics of colloid and solvent molecule. The same trend is appar- , , : . . : : . .
ent on reducing the colloidal particle size toward that of the @ Analytical
solvent, while the mass of the colloidal particle is kept con- 1 MD - 1
stant. Classical solutions of the Langevin equation also pre-
dict an effect of colloid particle density on its velocity auto-
correlation function28—-30. However, they do not capture 051 I I
the negative regions in the VACF characteristic of collisional "
“rebound” effects, which are so prominent in the systems

Cov(V)

) o > ; . VIR INFANTE N o

studied here. This is not surprising as the Langevin equation

does not take account of the microstructure of the solvent j

and nanocolloid system, which is essential if collisional ef- 0.5 i 1
fects are to be reproduced. Much largem-sized, colloidal i

particles are probably required for these formulas to be ac-
curate representations of the colloidal dynamics.
We turn now to the simulations carried out with more

-1 ) ' L . L . . L .
0 01 02 03 04 05 06 07 08 09 1

1 . T T
b . . , , . . . : ;
0.8 _ ( ) Analytical
L MD oo ]
0.6 i
04 i
= 0.5 .
% 02 .
© 2
>
0 S ol -
-0.2 .
-04 1 05 X i
0.6 . : : ' : : ' i
0 02 04 06 08 1 12 14 1 , , , | ‘ , , ,
¢ 0 01 02 03 04 05 06 07 08 09 1

t
FIG. 6. Colloidal particle velocity autocorrelation functions for

WCA simulations carried out with ten colloidal particles takiag FIG. 8. Colloidal particle velocity autocorrelation functions for
=1.5 and at a solvent densips=0.7. The four colloidal particle (a) WCA and(b) LJ simulations carried out with 55 colloidal par-
masses considered are shown are in the figurel372. The mass ticles and 10921 solvent molecules taking=2.0 and at solvent
ratiosm. /mg are given on the figure. densitiesp=0.7 andm,/ms=1.0.
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0.014 T T T T T T T T T TABLE IV. Mean values for the self-diffusion coefficient for
0012 - the WCA systems described in Table Il usirg=0.5 and pg
=0.7. The Einstein and experimentally derived expressions are
0.01 1 from Egs. (23) and (24), which are denoted by/Dg); and
0.008 (D/Dy),, respectively, in the table heading. We u3g=0.058 to
0.006 scale the simulation datdD). The heading[D/D)\p denotes the
ratio obtained from the simulations.
g; 0.004
S oo ¢ D (DDgwo  (DIDg);  (DIDy);
0 0.1 0.029 0.50 0.75 0.57
0002 1 1 02 0021 0.36 0.50 0.37
-0.004 0.3 0.012 0.21 0.25 0.21
-0.006 0.4 0.004 0.07 0.00 0.09

0 01 02 03 04 05 06 07 08 09 1
t

Table Ill). Nevertheless, the amplitude of the LJ system is
larger and the limiting self-diffusion coefficient is lower.
Therefore although the harmonic frequencies of the velocity
relaxation are statistically the same, the relaxation of the col-
loidal particles within the cage at later times is different.
mc/ms=1. Again as for the infinite dilution systems, the presumably, the surrounding cage is more “rigid” in the
oscillation frequency increases with particle size. Thereforegase of LJ fluid, which acts as a better restraint on the central
the same trends in the VACF are apparent in simulationparticle, making its correlation function retain its oscillatory
carried out at finite colloid packing fractions, with the Ein- form for longer time and causing the diffusion coefficient to
stein frequency again accounting for the short-time decay ofe |ower than in the WCA case. Coincidence of the short-
the VACF (|n this case it includes the effects of mass, Size,time behavior Of the VACF Of the WCA and LJ pure ﬂu|dS
and concentration of colloidal particlefsee Fig. 8, where \as also noted by Dean and Kushid].

there is again short time coincidence between the colloidal The diffusion coefficient of the colloidal particle is sensi-
normalized VACF and co$lut)]. tive to the size of the colloidal particle and solvent bulk

Additional simulations were carried out using the LJ po-density. For self-diffusion the classical solution for macro-
tential with an interaction truncation distancergf=2.5,  scopic spheres at infinite dilution is

in order to discover the effect of the type and range of the

potential. Parameters and results from these simulations are KT
compared with those of the equivalent WCA potential in D,
Table lll. Figures 8 and 9 show the VACF and integrated

VACF's, respectively, for comparable WCA and LJ systems, _ . _
at finite packing fraction. The LJ function oscillates at the' W& assume stick boundary conditions, anglis the shear
same frequency as that of the WCA system. This is to piscosity of the bulk solvent, which can be obtalned using
expected as the first and second Mori coefficients of the twd® Green-Kubo formula for example. Figure 10 gives a plot

. _1 _
systems are the same within the simulation statistieee  ©f D againsto, *, whereo =0+ 2a at two volume frac-
tions and solvent densities. At infinite dilution, the data fall

on a straight line for the larger particle size range with a

FIG. 9. The time dependent self-diffusion coefficient of two
simulations carried out with WCA and LJ potentiala=2.0,
m./ms=1.0, N.=55, andN=10921.

3w (2

0.06 , ps' ' ' ' ; D.=0 intercept at infinite dilution. The slopes of the

0.05 - =0.7 and 0.9 systems are in reasonable agreement with the
predictions based on E@22), which are also given in Fig.

0.04 10. The reduced values of the self-diffusion coefficients at
finite volume fraction make it more difficult to obtain a reli-

S 0.03 L | able extrapolation. Thé, for the a=0.5 WCA system

states(Table V) decrease almost linearly with increasigg

0.02 - 1 over the whole packing fraction range. The volume fraction
dependence of the colloid self-diffusion to first order is given

001 | . by the Einstein-Batchelor formuld]

% 0.1 0.2 03 0.4 05 D5(¢) =1-25¢+--, (23)
1/(1+ 2a) €0

FIG. 10. Dependence of the colloid self-diffusion coefficient on whereD. andD, are the self-diffusion coefficients of col-
the colloidal particle diametero+2a) ! for two volume frac- loidal particles at long time and infinite dilutiofi.e., N,
tions and solvent densities. The lines correspond to the predicted 1), respectively. An accurate fit to experimental data cov-
slopes based on the Stokes-Einstein relationghip (22)] for the  ering the higher volume fraction region is given by E24),
¢—0 systems. [32],
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TABLE V. Mean value for the shear viscosity for the WCA  |ation data is best with Eq26), although the viscosity is
systems of Table Il usingr=0.5 andps=0.7. The /5, were  systematically lower than found experimentdltgpresented
calculated usinggo=0.84 from Table I. The predictions from Egs. well by Eq. (26)], particularly with increasing volume frac-
(25) and(26) are denoted by#/ 7o), and (n/ 70)ko , respectively.  tion. Nevertheless, the agreement between the simulated and
The standard errors are typicalty10%. The heading+#/70)uo  experimental self-diffusion coefficients and the shear viscos-

denotes the ratio obtained from the simulations. ity is quite remarkable, as these model colloidal particles are
rather small. It suggests that the volume fraction dependence
¢ 7 (7! 70)vo (7! 70)1 (7! n0)ko of the Newtonian shear viscosity observed for macrocolloi-
0.1 1.35 16 1.31 1.41 dal particle systems may extend largely unchanged down to
0.2 1.69 20 1.74 215 simple liquid distance scales.
0.3 2.94 3.5 2.29 3.64
0.4 3.80 4.5 2.96 7.50 V. CONCLUSIONS
We have investigated the self-diffusion coefficients and
De(¢) shear viscosity of model nanocolloidal dispersions. The mass
Do =0.8(1.00-1.154)(1.0—-2.0¢). (24 and size dependence of the VACF's were calculated. For

colloidal particles with a lower density than the solvent mol-
ecules, the colloidal VACF had a pronounced damped oscil-
latory form with a frequency given well by the Einstein fre-
quency Q.. The oscillatory frequency increased with
decreasing mass and increasing solvent density. Both of
these parameter@nd also the value of the colloid concen-

tion) determined the value of the first Mori coefficient of
the colloidal particle K.;) and also the oscillation frequency
(Qog=JK,1) to a very good approximation.

Despite the oscillations observed in the VACF for small
‘mass colloidal particles, the influence of colloid particle den-
sity on the value of the self-diffusion coefficient was found

Table IV shows that the prediction f@./D.q from Eq.
(23) overestimates the value fd./D.q at finite packing
fraction (especially at¢=0.1). The agreement with the
simulation data is much better using E84).

The shear viscosity of the model colloidal liquids was
also computed using the shear stress correlation function a
the appropriate Green-Kubo formula3]. Let » be the vis-
cosity of the colloidal mixture. The values computed are pre
sented in Tables | and Il. BotD and » were subject to
greater statistical uncertainty with increasing packing frac

tion and colloidal particle size, and sometimes it was difficult b kabl I Th if-diffusi ficient
to establish a level plateau in the respective integrated tim{® be remarkably small. The seli-diffusion coefficients were
sensitive to colloid particle size however, but not to mass at

correlation functions. Nevertheless, the expected trend of in=~"_ ; - i . . )
given size. Additional simulations were carried out using

creasing shear viscosity with volume fraction was observe(?he LJ form for all interactions in the system. The first Mori

(see Table Il). The value of the viscosity decreased with . .
increasing system size, presumably because the collection SPeff'C'entS of the WC.A and L‘? syst_ems were statistically t_he
ame for equal colloidal particle size and solvent density,

molecules was less constrained by the periodic boundar . g . . .
conditions for larger systems, and therefore the “activation” m.j’ consistent W'.th this, the oscillation freque_ncy in the ve-
energies for transitions between the various configuration city autqcorrelaﬂon funt_:ﬂon was the same in both cases.
states were typically lower. The mass dependence was n pe amplitude O.f th(_a oscnlau_o_ns was larger for the LJ Sys-
studied at the higher packing fractions fér>0.1. As the ems and self-dlffl_JS|on coefﬂment_s were smaller, reflectm_g
number of colloidal particles increased, the coarse—grainege greater coh_esmn Of. the LJ fluid, which acted to restrain
nature of the solvent was probably contributing to the greate etter the colloidal particlgeven though the force field ex-

statistical fluctuation in the data. Phase space became mo rlenceq by t.he colloidal particle was muph the s)a_ﬁt_ibe
okes-Einstein formula for the self-diffusion coefficient at

structured and the system was probably more readily | . A . .

“trapped” in only part of the available phase space for times nfm'|te dilution gpplles well even fqr t'hese small collp!dal

comparable to the length of the simulation. A low order ex_partlcles, especially for the higher liquid number densities.
The concentration dependence of the self-diffusion coef-

pansion for the ration/ s, according to classical hydrody- ficients and the shear viscosity agreed quite well with clas-

namics isf1] sical limiting and semiempirical expressions derived from
(&) experimental data for much larger colloidal particles, sug-
77—:1+2.5¢+(6t 1) %+ - - -. (25)  gesting a wider range of colloidal particle sizes where these

0

formulas can be applied. A possible additional interest in the

The Kri Doch L irical f | mass dependence of these colloidal particles may be found
e Krieger-Docherty expression Is an empirical tormulag, - yha |arger and lower density colloidal particles, which

Wh?Ch covers the higher end of the CQIIOid"’.‘I I!quid range, andi creasingly resemble a vapor cavity in the liquid. Vapor
‘(’j\'ht'ch "Cjtr']n reasonable agdrehement with existing experimental,yities are of some current research interest as they occur in
ata in the range covered heH, cavitating liquids and other areas of practical intefess., in

() ) foams.
7 - <Lt bt (29
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